Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
ACS Pharmacol Transl Sci ; 5(10): 892-906, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36268126

RESUMO

Formyl peptide receptor 2 (FPR2) plays an integral role in the transition of macrophages from a pro-inflammatory program to one that is pro-resolving. FPR2-mediated stimulation of resolution post myocardial infarction has demonstrated efficacy in rodent models and is hypothesized to reduce progression into heart failure. FPR2 agonists that promote long-lasting receptor internalization can lead to persistent desensitization and diminished therapeutic benefits. In vitro signaling profiles and propensities for receptor desensitization of two clinically studied FPR2 agonists, namely, BMS-986235 and ACT-389949, were evaluated. In contrast to BMS-986235, pre-stimulation with ACT-389949 led to a decrease in its potency to inhibit cAMP production. Moreover, ACT-389949 displayed greater efficacy for ß-arrestin recruitment, while efficacy of Gi activation was similar for both agonists. Following agonist-promoted FPR2 internalization, effective recycling to the plasma membrane was observed only with BMS-986235. Use of G protein-coupled receptor kinase (GRK) knock-out cells revealed a differential impact of GRK2 versus GRK5/6 on ß-arrestin recruitment and Gi activation promoted by the two FPR2 agonists. In vivo, decreases of granulocytes in circulation were greatly diminished in mice treated with ACT-389949 but not for BMS-986235. With short-term dosing, both compounds induced a pro-resolution polarization state in cardiac monocyte/macrophages post myocardial infarction. By contrast, with long-term dosing, only BMS-986235 preserved the infarct wall thickness and increased left ventricular ejection fraction in a rat model of myocardial infarction. Altogether, the study shows that differences in the desensitization profiles induced by ACT-389949 and BMS-986235 at the molecular level may explain their distinct inflammatory/pro-resolving activities in vivo.

2.
JACC Basic Transl Sci ; 6(8): 676-689, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466754

RESUMO

Dysregulated inflammation following myocardial infarction (MI) leads to maladaptive healing and remodeling. The study characterized and evaluated a selective formyl peptide receptor 2 (FPR2) agonist BMS-986235 in cellular assays and in rodents undergoing MI. BMS-986235 activated G proteins and promoted ß-arrestin recruitment, enhanced phagocytosis and neutrophil apoptosis, regulated chemotaxis, and stimulated interleukin-10 and monocyte chemoattractant protein-1 gene expression. Treatment with BMS-986235 improved mouse survival, reduced left ventricular area, reduced scar area, and preserved wall thickness. Treatment increased macrophage arginase-1 messenger RNA and CD206 receptor levels indicating a proresolution phenotype. In rats following MI, BMS-986235 preserved viable myocardium, attenuated left ventricular remodeling, and increased ejection fraction relative to control animals. Therefore, FPR2 agonism improves post-MI healing, limits remodeling and preserves function, and may offer an innovative therapeutic option to improve outcomes.

3.
Anal Biochem ; 568: 41-50, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605634

RESUMO

Apelin, the endogenous ligand for the APJ receptor, has generated interest due to its beneficial effects on the cardiovascular system. Synthesized as a 77 amino acid preproprotein, apelin is post-translationally cleaved to a series of shorter peptides. Though (Pyr)1apelin-13 represents the major circulating form in plasma, it is highly susceptible to proteolytic degradation and has an extremely short half-life, making it challenging to quantify. Literature reports of apelin levels in rodents have historically been determined with commercial ELISA kits which suffer from a lack of selectivity, recognizing a range of active and inactive isoforms of apelin peptide. (Pyr)1apelin-13 has demonstrated beneficial hemodynamic effects in humans, and we wished to evaluate if similar effects could be measured in pre-clinical models. Despite development of a highly selective LC/MS/MS method, in rodent studies where (Pyr)1apelin-13 was administered exogenously the peptide was not detectable until a detailed stabilization protocol was implemented during blood collection. Further, the inherent high clearance of (Pyr)1apelin-13 required an extended release delivery system to enable chronic dosing. The ability to deliver sustained doses and stabilize (Pyr)1apelin-13 in plasma allowed us to demonstrate for the first time the link between systemic concentration of apelin and its pharmacological effects in animal models.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacocinética , Peptídeos/análise , Animais , Cromatografia Líquida , Cães , Ensaio de Imunoadsorção Enzimática , Hemodinâmica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
4.
JACC Basic Transl Sci ; 4(8): 905-920, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31909300

RESUMO

Dysregulated inflammation following myocardial infarction (MI) promotes left ventricular (LV) remodeling and loss of function. Targeting inflammation resolution by activating formyl peptide receptors (FPRs) may limit adverse remodeling and progression towards heart failure. This study characterized the cellular and signaling properties of Compound 43 (Cmpd43), a dual FPR1/FPR2 agonist, and examined whether Cmpd43 treatment improves LV and infarct remodeling in rodent MI models. Cmpd43 stimulated FPR1/2-mediated signaling, enhanced proresolution cellular function, and modulated cytokines. Cmpd43 increased LV function and reduced chamber remodeling while increasing proresolution macrophage markers. The findings demonstrate that FPR agonism improves cardiac structure and function post-MI.

5.
ACS Med Chem Lett ; 9(12): 1175-1180, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30613322

RESUMO

Myeloperoxidase (MPO) generates reactive oxygen species that potentially contribute to many chronic inflammatory diseases. A recently reported triazolopyrimidine MPO inhibitor was optimized to improve acid stability and remove methyl guanine methyl transferase (MGMT) activity. Multiple synthetic routes were explored that allowed rapid optimization of a key benzyl ether side chain. Crystal structures of inhibitors bound to the MPO active site demonstrated alternate binding modes and guided rational design of MPO inhibitors. Thioether 36 showed significant inhibition of MPO activity in an acute mouse inflammation model after oral dosing.

6.
Medchemcomm ; 8(11): 2093-2099, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108726

RESUMO

Myeloperoxidase, a mammalian peroxidase involved in the immune system as an anti-microbial first responder, can produce hypochlorous acid in response to invading pathogens. Myeloperoxidase has been implicated in several chronic pathological diseases due to the chronic production of hypochlorous acid, as well as other reactive radical species. A high throughput screen and triaging protocol was developed to identify a reversible inhibitor of myeloperoxidase toward the potential treatment of chronic diseases such as atherosclerosis. The identification and characterization of a reversible myeloperoxidase inhibitor, 7-(benzyloxy)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine is described.

7.
Cell Metab ; 24(2): 223-33, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508871

RESUMO

The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRß-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.


Assuntos
Movimento Celular , Imidazóis/efeitos adversos , Imidazóis/farmacologia , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Receptores X do Fígado/agonistas , Neutrófilos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/metabolismo , Adolescente , Adulto , Animais , Movimento Celular/efeitos dos fármacos , Colesterol/sangue , Colesterol/metabolismo , Voluntários Saudáveis , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Imidazóis/uso terapêutico , Contagem de Leucócitos , Lipoproteínas/sangue , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Triglicerídeos/sangue , Adulto Jovem
8.
Cell Metab ; 24(2): 234-45, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508872

RESUMO

Human genetics studies have implicated GALNT2, encoding GalNAc-T2, as a regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, but the mechanisms relating GALNT2 to HDL-C remain unclear. We investigated the impact of homozygous GALNT2 deficiency on HDL-C in humans and mammalian models. We identified two humans homozygous for loss-of-function mutations in GALNT2 who demonstrated low HDL-C. We also found that GALNT2 loss of function in mice, rats, and nonhuman primates decreased HDL-C. O-glycoproteomics studies of a human GALNT2-deficient subject validated ANGPTL3 and ApoC-III as GalNAc-T2 targets. Additional glycoproteomics in rodents identified targets influencing HDL-C, including phospholipid transfer protein (PLTP). GALNT2 deficiency reduced plasma PLTP activity in humans and rodents, and in mice this was rescued by reconstitution of hepatic Galnt2. We also found that GALNT2 GWAS SNPs associated with reduced HDL-C also correlate with lower hepatic GALNT2 expression. These results posit GALNT2 as a direct modulator of HDL metabolism across mammals.


Assuntos
Lipoproteínas HDL/metabolismo , N-Acetilgalactosaminiltransferases/deficiência , Sequência de Aminoácidos , Proteína 3 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Sequência de Bases , HDL-Colesterol/sangue , Técnicas de Silenciamento de Genes , Glicoproteínas/metabolismo , Homozigoto , Humanos , Fígado/enzimologia , Camundongos , Camundongos Knockout , Modelos Animais , Mutação/genética , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Fenótipo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Primatas , Proteômica , Ratos , Triglicerídeos/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
9.
PLoS One ; 8(8): e71541, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015188

RESUMO

High density lipoprotein (HDL) cholesterol levels are associated with decreased risk of cardiovascular disease, but not all HDL are functionally equivalent. A primary determinant of HDL functional status is the conformational adaptability of its main protein component, apoA-I, an exchangeable apolipoprotein. Chemical modification of apoA-I, as may occur under conditions of inflammation or diabetes, can severely impair HDL function and is associated with the presence of cardiovascular disease. Chemical modification of apoA-I also impairs its ability to exchange on and off HDL, a critical process in reverse cholesterol transport. In this study, we developed a method using electron paramagnetic resonance spectroscopy (EPR) to quantify HDL-apoA-I exchange. Using this approach, we measured the degree of HDL-apoA-I exchange for HDL isolated from rabbits fed a high fat, high cholesterol diet, as well as human subjects with acute coronary syndrome and metabolic syndrome. We observed that HDL-apoA-I exchange was markedly reduced when atherosclerosis was present, or when the subject carries at least one risk factor of cardiovascular disease. These results show that HDL-apoA-I exchange is a clinically relevant measure of HDL function pertinent to cardiovascular disease.


Assuntos
Apolipoproteína A-I/sangue , Aterosclerose/sangue , Lipoproteínas HDL/sangue , Síndrome Coronariana Aguda/sangue , Adulto , Idoso , Animais , Apolipoproteína A-I/química , Estudos de Casos e Controles , Feminino , Humanos , Peróxido de Hidrogênio/química , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade , Oxidantes/química , Oxirredução , Peroxidase/química , Ligação Proteica , Coelhos , Fatores de Risco , Adulto Jovem
10.
Psychopharmacology (Berl) ; 176(3-4): 287-95, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15107968

RESUMO

RATIONALE: Motor movements (head bobs) in the rabbit have been shown to be elicited by LSD-like hallucinogenic drugs through actions at central serotonin 5-HT(2A) receptors, though their central locus remains unknown. Serotonergic innervation of the hippocampus has been suggested to play an important role in motor programming including movements of the head. OBJECTIVES: We examined whether intrahippocampal injections of a 5-HT(2A) receptor agonist would elicit head bobs and whether elicitation of head bobs would be modified by increases in hippocampal 5-HT(2A) receptor density. METHODS: Animals received bilateral injections of DOI or its vehicle into the dorsal hippocampus either before or after chronic administration of MDL 11,939 or its vehicle. The number of head bobs was counted continuously for 60 min and reported in blocks of 10 min and this was compared with the density of 5-HT(2A) receptors in dorsal hippocampus. RESULTS: Infusion of DOI into the CA1 region of the dorsal hippocampus elicited head bobs that were blocked by prior intrahippocampal injection of the 5-HT(2A) receptor antagonist ketanserin. Receptor autoradiography revealed that chronic administration of MDL 11,939 produced a 2.5-fold up-regulation of 5-HT(2A) receptors in the CA1 field and dentate gyrus of the hippocampus. This 5-HT(2A) receptor up-regulation was associated with a nearly 2-fold increase in head bobs elicited by infusion of DOI into the CA1 field. CONCLUSIONS: These results indicate that 5-HT(2A) receptors located in the CA1 field of the hippocampus mediate a motor movement, head bobs, and that this mediation is functionally related to receptor density.


Assuntos
Movimentos da Cabeça/fisiologia , Hipocampo/fisiologia , Receptor 5-HT2A de Serotonina/fisiologia , Anfetaminas/administração & dosagem , Anfetaminas/farmacologia , Animais , Autorradiografia , Difusão , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Injeções , Masculino , Piperidinas/farmacologia , Tratos Piramidais/fisiologia , Coelhos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...